
OPTIMIZATION TECHNIQUES AND
AN INTRODUCTION TO

GENETIC ALGORITHMS AND SIMULATED ANNEALING
Dr. T. Ghose
Dept. of EEE
BIT, Mesra

INTRODUCTION::

Almost any problem in the design, operation, and analysis of manufacturing
plants, and any associated problem can be reduced in the final analysis to the problem of
determining the largest and smallest value of a function. So, optimization is the act of
obtaining the best result under given circumstances. In most engineering design activities
the design objective could be simply to minimize cost of production or to maximize the
efficiency of production. For example, optimization required in designing of aircraft and
aerospace structures for minimum weight, finding the optimal trajectory of space
vehicles, designing of civil engineering structures such as frames, foundations, bridges,
towers, chimneys and dams for minimum cost, optimal designing of linkages, cranes,
gears, machine tools or pumps, turbines and heat transfer equipment for maximum
efficiency, optimal production planning, controlling, and scheduling, optimal operation
and control of power system , optimum designing of control system etc.

It is almost impossible to apply a single formulation procedure for all engineering
design problems. Since the objective in a design problem and the associated design
parameters vary from product to product, different techniques need to be used in different
problems. For the reason, it is required to create a mathematical model of the optimal
design problem, which then can be solved using an optimization algorithm. The steps
involved are, need for optimization, choose design variables ,formulate constraints,
formulate objective function, set up variable bounds, choose an optimization algorithm,
obtain solution.
 It can be stated as follows

where X is an n-dimensional vector called the design vector, f(X) is termed the objective
function, and gj(X) and lj(X) are inequality & equality constraints respectively.
n = no of variables , m and p = no of constraints

pjl

mjXg

constrainsthetosubject

xfimizeswhich

x

x

x

XFind

j

j

n

.......2 ,1 ,0

,...2 ,1 ,0)(

)(min
'

 2

1

==

=≤





















=

 2

The above problem is called the constrained optimization problem. The
problems which do not involve any constraint is called unconstrained optimization
problem

DESIGN VARIABLES::

A design problem usually involves many design parameters, of which some are
highly sensitive to proper working of the design. These are called design or decision
variables xi, i=1,2,...,n
 So design vector, X={x1, x2,....,xn}
Certain quantities are usually fixed at the outset & are called preassigned parameters.

 CONSTRAINTS::

The constraints represent some functional relationships among the design variables &
other design parameters satisfying certain physical phenomenon & certain resource
limitations. Constraints that represent limitations on the behavior or performance of the
systems are termed behavior or functional constraints. Constraints that represent physical
limitations on design variables such as availability, fabricability, & transportability are
known as geometric or side constraints.
 eg.:- in mechanical & civil Engg. problems , the constraints are formulated to satisfy
stress & deflection limitations.

VARIABLE BOUNDS::

There should be some minimum & maximum bounds on each design variables. It is
required to confine the search algorithm within these bounds.
e.g. xi

(L) ≤ = xi≤ = xi
(U). If the variables do not lie on the bounded region then chosen

bound may be readjusted & the optimization algorithm may be simulated again.

OBJECTIVE FUNCTION::

The criteria with respect to which the design is optimized, when expressed as a function
of the design variables, is known as criterion or merit or objective function. The objective
function for minimization is generally taken as weight in air craft & aerospace structural
design problems i.e. in civil engg., minimization of cost. The maximization of
mechanical efficiency is the obvious choice of an objective in mechanical design
engineering problem. However there may be cases where the optimization w.r.t. a
particular constraint may lead to results that may not be satisfactory w.r.t another criteria
e.g. in mechanical design a gear box transmitting the maximum power may not have the
minimum weight. So selection of objective function is the most important decision. An
optimization problem involving multiple objective functions is known as a multi-
objective programming problem.

 3

 If f1(x) and f2(x) denote 2 objective functions, then new one will be

 f(x) = a*f1(x)+b*f2(x)
where a & b are constants whose values indicate the relative importance of one to the
other.

OPTIMIZATION ALGORITHMS::

These are basically divided into two groups
1:-Traditional methods
2:-Non traditional methods

Traditional methods::-These are helpful in finding the optimum solution of continuous
& differentiable functions These methods are analytical & make use of the techniques of
differential calculus. It provides a good understanding of the properties of the minimum
& maximum points in a function & how optimization algorithm work iteratively to find
the optimum point in a problem. It is classified into 2 categories
 1 .Direct method
 -Bracketing methods
 Exhaustive search method
 Bounding phase method
 -Region-elimination method
 Interval halving method
 Fibonasi search method
 -Point estimation method
 Successive quadratic method
 2.Gradient method
 -Newton raphson method
 -Bisection method
 -Secant method
 -Cubic search method

Direct method do not use any derivative information of the objective function , only its
values are used to guide the search process. Where as Gradient method uses derivative
information(1st & 2nd order).

 Demerits::

• The convergence to an optimal solution depends on the chosen optimal
 solution.
• Most algorithms tend to get stuck to a suboptimal solution.
• An algorithm efficient in solving one optimization problem may not be efficient

in solving a different optimization problem.
• Algorithms are not efficient in handling problems having discrete variables.
• Algorithms can not be efficiently used on parallel machine.

 4

2- Nontraditional optimization algorithm::

These are quite new methods & are becoming popular day by day. Two such algorithms
are
 - Genetic Algorithm
 - Simulated Annealing
 Difference between Genetic algorithm & Traditional optimization
algorithm:
 -GAs work with a coding of the parameter set not the parameters

 themselves.
 -GAs search from a population of points not a single point.
 -GAs use payoff(objective for) information not derivative or other

 auxiliary knowledge.
 -GAs use probabilistic transition rules not deterministic rules.

GENETIC ALGORITHMS

Genetic Algorithm is a nontraditional and optimization method based on the mechanics
of natural genetics and natural selection. Professor John Holland of the University of
Michigan envisaged the concept of these algorithms in the mid sixties. Thereafter a
number of his students and other researchers have contributed to developing this field.
GAs are now becoming very much popular in engineering optimization problems for his
wide range of precise search and capability of solving complex non-linear problems.
Research works are going on to extend the efficiency of Genetic Algorithms as well as
the implementation technique of GAs on various problems. The different steps of GAs
are now outlined in the working principle.

Working Principles:

Unlike many mathods, GAs use probabilistic transition rules to guide their search. The
method is not a simple random search or is not a decision making tool depending on the
simple probability act just like a toss of a coin. GAs use random choice as a tool to guide
a search toward regions of the search space with likely improvement.

To demonastrate the working principles of GAs, the following maximization problem is
considered

Maximize f(), x = 1,2,N

i
()

 i
()x x x iL

i
U ≤ ≤ ,

Although a maximization problem is considered here, a minimization problem can also
be handled using GAs. The working of GAs is completed by performing the following
tasks:

Coding: To implement GAs in the solution of the above maximization problem, variable
xi's are first coded in some string structures. Variable xi's are coded by binary

 5

representation having 0's and 1's. The length of the coded string is usually determined
according to the desired solution accuracy. For example, if four bits are used to code each
variable in a two variable function optimization problem, the strings (0000 , 0000) and
(1111, 1111) would represent the points (x , x) (x x)1

(L)
2
(L) T

1
(U)

2
(U) T, , respectively, because

the substring (0000) and (1111) have the minimum and miximum decoded values. Any
other eight bit string can be found to represent a point in the search space according to a
fixed mapping rule. Usually, the following linear mapping rule is used:

x = x +
x - x

2 - 1
 decoded val ue (Si i

(L) i
(U)

i
(L)

Li i)

In the above equation, the variable xi is coded in a substring Si of length li. The decoded

value of a binary substring Si is calculated as

2 S where S (0, 1) and thei
i

i=0

l-1

∑ ∈, string S is represented as (Sl-1 Sl-2.... S2S1So). For

example, a four bit string (0 111) has a decoded value equal to ((1) 2o + (1) 2' + (1) 22 +

(0) 23) or 7. It is worthwhile to mention here that with four bits to code each variable,

there are only 24 or 16 distinct substrings possible, because each bit position can take a
value either 0 or 1. The accuracy that can be obtained with a four bit coding is only
approximately 1/16th of the search space. But as the string length is increased by one, the
obtainable increases exponentially to 1/32th of the search space.

Initialization :

Referring to the maximization problem a set of binary strings representing the variable xi

are generated at random to make the initial population. The string in GA correponds to '
"chromosome" and bits in a string refers "genes" in natural genetics.

Fitness Function :
Every member string in a population is judged by the functional value of the fitness
function. As GAs follow the rule of survival-of-the-fittest candidate in nature to make a
search process so the algorithm is naturally suitable for solving maximization problems.
Minimization problems are ususally transformed into minimization problems by some
suitable tranformation. In general, a fitness function F(x) is first derived from the
objective function and used in successive genetic operations.

Genetic Operators:

With an initial population of individuals of various fitness values, the operators of GAs
begin to generate a new and improved population from the old one. A simple genetic

 6

algorithm (SGA) consists of three basic operations : reproduction, crossover and
mutation. Through these operations a new population of points is evaluated. The
population is iteratively operated by the above three operators and evaluated until the
goal or termination criterion is met. One cycle of these operations and subsequent
evaluation procedure is known as generation in GAs.

Reproduction:

Reproduction is usually the first operator applied on a population. Reproduction selects
strings according to the fitness values in a population and forms a mating pool. Selecting
strings according to their fitness values means that string with a higher value have a
higher probability of contributing one or more off springs to the next generation. The i-th
string in the population is selected with a probability proportional to Fi. Since the

population size is usually kept fixed in a simple GA, the sum of the probability of each
string being selected for the mating pool must be one. Therefore, the probability for
selecting the i-th string is

 ρ i =

=
∑

F

F

i

j
j

n

1

 ,

where, n is the population size. One way to implement this selection scheme is to imagine
a roulette-wheel with its circumference marked for each string proportionate to the
string's fitness. The roulette-wheel is spun n times, each time selecting an instance of the
string chosen by the roulette-wheel pointer. Since the circumference of the wheel is
marked according to a string's fitness, the roulette-wheel mechanism is expected to make

F Fi /
−

 copies of the i-th string in the mating pool. The average fitness of the population is
calculated as,

 F F
n

i

i

n

=
=
∑

1

Fig. 1 shows a roulette-wheel for fine individuals having different fitness values. Since
the third individual has a higher fitness value than any other, it is expected that the
roulette-wheel selection will choose the third individual more than any other individual.
This roulette-wheel selection scheme can be simulated easily.

Using the fitness value Fi of all strings, the probability of selecting a string Pi can

be calculated. Therefore, the cumulative probability (Pi) of each string being copied can

be calculated by adding the individual probabilities from the top of the list.

 7

)LJ��� $ URXOHWWH �ZKHHO PDUNHG IRU ILYH LQGLYLGXDOV

DFFRUGLQJ WR WKHLU ILWQHVV YDOXHV�

1
25%

2
5%

3
40%

4
10%

5
20% 1

2

3

4

5

Point Fitness

1 25.0
2 5.0
3 40.0
4 10.0
5 20.0

Crossover:

In reproduction, good strings in a population are probabilistically assigned a larger
number of copies and a mating pool is formed. But no new strings are formed in the
reproduction phase. In the crossover operator, new strings are created by exchanging
information among strings of the mating pool. Many crossover operators exists in the GA
literature. In most crossover operators, two strings are picked from the mating pool at
random and some portions of the strings are exchanged between the strings. A single -
point crossover operator is performed by randomly choosing a crossing site along the
string and by exchanging all bits on the right side of the crossing site as shown:

0 0 0 1 0 0 0 0 0 1 0 1

 1 1 1 0 1 1 1 1 1 0 0

⇒

The two strings participating in the crossover operation are known as parent strings and
the resulting strings are known as children strings. It can be expected that good substrings
from parent strings can be combined to form a better child string, if an appropriate site is
chosen. Since the knowledge of an appropriate site is usually not known beforehand, a
random site is often chosen. With a random site, the children strings produced may or
may not have a combination of good substrings from parent strings, depending on the
position of crossover point. If good children are not produced from crossover operator,
there is no need to worry so much about this. Because reproduction operator will select
these strings with fewer copy in subsequent strings as a result they will not survive too

 8

long. It is clear from this discussion that the effect of crossover may be detrimental or
beneficial. Thus, in order to preserve some of the good strings that are already present in
the mating pool, not all strings in the mating pool are used in crossover.

Mutation :
A crossover operator is mainly responsible for the search of new strings, even though a
mutation operator is also used for this purpose. The mutation operator changes 1 to 0 and
vice versa in a bit position with a small mutation probability, pm. Changing bit with

probability pm can be simulated by choosing a number between 0 to 1 at random. If the

random number is smaller than pm, the randomly selected bit is altered; otherwise the bit

is kept unchanged. The need for mutation is to create a point in the neighbourhood of the
current point, thereby achieving a local search around the current solution. The mutation
is also used to maintain diversity in the population. For example, consider the following
population having four eight-bit strings:

0 1 1 0 1 1 0 0
0 0 1 0 0 0 1 1
0 1 0 1 1 1 1 1
0 1 1 1 0 0 0 0

Notice that all four strings have a 0 in the left-most position. If the true optimum solution
requires 1 in that position, then neither reproduction nor crossover operator described
above will be able to create 1 in that position. The inclusion of mutation introduces some
probability of turning 0 into 1.

These three operators are simple and straightforward. A number of research papers have
so far been conducted to improve the efficiency of GAs. Some variations have been
introduced in GAs operators. In most cases, the variants are developed to suit particular
problems.

Advantages of GAs :

As seen from the above description of the working principles of GAs, they are radically
different from most of the traditional optimization methods. However, the general
advantages are described in the following paragraphs.
GAs work with a string-coding of variables instead of the variables. The advantage of
working with a coding of variables is that the coding discretizes the search space, even
though the function may be continuous. On the other hand, since GAs require only
function values at various discrete points a discrete or discontinuous function can be
handled with no extra cost. This allows GAs to be applied to a wide variety of problems.
Another advantage is that the GA operators exploit the similarities in string-structures to
make an effective search.

 9

The most striking difference between GAs work with a population of points instead of a
single point. Because there are more than one string being processed simultaneously, it is
very likely that the expected GA solution may be a global solution. Even though some
traditional algorithms are population-based, like Box's evolutionary optimization and
complex search methods, those methods do not use previously obtained information
efficiently. In GAs, previously found good information is emphasized using reproduction
operator and propagated adaptively through crossover and mutation operators. Another
advantage with a population-based search algorithm is that multiple optimal solutions can
be captured in the population easily, thereby reducing the effort to use the same algorithm
many times.
In discussing GA operators or their working principles in the previous section, nothing
has been mentioned about the gradient or any other auxiliary problem information. In
fact, GAs do not require any auxiliary information except the objective function values.
Although the direct search methods used in traditional optimization methods do not
explicitly require the gradient information, some of those methods use search directions
that are similar in concept to the gradient of the function. Moreover, some direct search
methods work under the assumption that the function to be optimized is unimodal and
continuous. In GAs, no such assumption is necessary.
One other difference in the operation of GAs is the use of probabilities in their operators.
None of the genetic operators work deterministically. The basic problem with most of the
traditional methods is that they use fixed transition rules to move from one point to
another. For instance, in the steepest descent method, the search direction is always
calculated as the negative of the gradient at any point, because in that direction the
reduction in the function value is maximum. In trying to solve a multimodal problem
with many local optimum points, search procedures may easily get trapped in one of the
local optimum points. But in GAs, an initial random population is used, to start with, the
search can proceed in any direction and no major decisions are made in the beginning.
Later on, when the population begins to converge in some bit positions, the search
direction narrows and a near optimal solution is achieved. This nature of narrowing the
search space as the search progresses is adaptive and is a unique characteristic of genetic
algorithms.

An Examples

Design of simple can by GA

A cylindrical can is considered to have only two design parameters- diameter d and
height h. Let us consider that the can needs to have a volume of at least 300ml and the
objective of the design is to minimize the cost of can material.
Nonlinear objective function

 10

Step 1

In order to get optimal parameter values of d and h which satisfy the constraint g4 and
minimize f we first need to code the parameter values in binary strings.

Assume five bits are representing each of the parameters. So the overall string length is
equal to 10.

The following string represents a can of diameter 8 cm and height 10 cm.

 01000 01010 h = 10
 d h
 d = 8

Step 2
In the above representation, the lower and upper values of both parameters are
considered to be zero and 31. So mapping function is not required to use to get the exact
value as minimum (00000) and maximum value (11111) represent 0 and 31 respectively
which satisfy the lower and upper bounds considered for d and h parameters. But GAs
can be assigned to use any integer or non-integer values just by changing the string
length, lower and upper bounds.
 xi

max - xi
min

xi = xi
min + ------------------ X Decoded value of string i.

 2L-1

In the above example L = 5, xi
min = 0, xi

max = 31

Step 3

Assigning fitness to a solution

The fitness is made equal to the objective function value. For example, the fitness of

above can

F (S) = 0.0654 x Π82
 ------- + ∏ (8) (1 0)
 2

23

()

maxmin

maxmin

2

2

h

d var

300)4/(),(

),2/((),

hh

ddsiablebound

dhdSubjecttov

dhdchdf

≤≤
≤≤

≥=
+=

π
ππ

 11

= 23 (assuming C = .0654)

Since the objective of the optimization is to maximize the objective function, it is to be
noted that a solution with a smaller fitness value is better compared to another solution.

Fig. 2 A random population of 6 cans.
Fig. 2 shows a random population of 6 cans. This fitness (penalized cost) of each can is
marked on the can. It is interesting to note that two solutions do not have 300 ml. volume
inside and thus have been penalized by adding an extra artificial cost thus making the
infeasible ones become worse solutions.

Step 4
Reproduction operator : The primary objective of the reproduction operator is to
emphasize good solutions and eliminate bad solutions in a population, while keeping the
population size constant. This is achieved by performing the following tasks:

(1) Identifying good (usually above-average) solution in a population .
(2) Making multiple-copies of good solutions.
(3) Eliminating bad solutions from the population so that multiple copies of good

solutions can be placed in the population.
There exist a number of ways to achieve the above tasks. Some common methods are
tournament selection- proportionate selection, ranking selection and others. In the
following, we illustrate the binary tournament selection.

As the name suggests, tournaments are played between two solutions and the better
solution is chosen and placed in a population slot. Two other solutions are picked again
and another population slot is filled up with the better solution. If done systematically,
each solution can be made to participate in exactly two tournaments. The best solution in
a population will win both times, thereby making two copies of it in the new population.
Similarly, the worst solution will lose in both tournaments and will be eliminated from

 11 +28

 +35

23

30

 24

37
9

 12

the population. This way, any solution in a population will have zero, one, or two copies
in the new population.
Figure 3 shows the six different tournaments played between the old population
members (each gets exactly two turns) shown in figure 3. When cans with a cost of 23
units and 30 units are chosen at random for tournament, the can costing 23 units is chosen
and placed in the new population . Both cans are replaced in the old population and two
cans are chosen for other tournaments in the next round. This is how the mating pool is
formed and the new population after reproduction shown in box of fig . 3 is created. It is
interesting to note how better solutions (having lesser costs) have made themselves have
more than one copy in the new population and worse solutions have been eliminated from
the population. This is precisely the purpose of a reproduction operator.

Mating Pool

 +28

 +28

 +35

 +35

Figure 3. Tournaments played between six population members are shown. Solutions
within the dashed box form the mating pool.

23

30

11

24

37

9

23

30

11

24

37

9

23

24

37

24

23

30

 13

Step 5

Like the reproduction operator, there exist a number of methods for crossover operations.
Here a single point crossover operation is illustrating for the CAN problem. In fig. 4,
reproduction operator selects two strings and the third site along the string length in
chosen at random and contents of the right side of this cross site are swapped between the
two strings. The process creates two new strings.

 (8,10) 010 00 01010 Æ 01010 00110

 (14,6) 011 10 00110 Æ 01100 01010

Fig. 4 : An illustration of the single point crossover operator.

In order to preserve some good strings selected during the reproduction operator, not all
strings in the population are used in crossover. If a crossover probability of Pc is used
then 100 Pc% strings in the population are used in the crossover operation and (100 (1-
Pc)% of the population are simply copied to the new population.

Step 6

The mutation operator changes 1 to a 0 and vice versa with a small mutation probability
Pm. The need for mutation is to keep diversity in the population. Fig. 5 shows how a
string obtained after reproduction and crossover operator has been mutated to another
string representing a slightly different CAN.

 (10, 6)0.1 010- 001100Æ 01000 00110 (8 X 6)

Fig. 5 An illustration of the mutation operation.

Constrained optimization using GA

An optimal design problem having N variables is written as a nonlinear programming

(NLP) problem as follows:

22 16

23

37

22

39

 14

Minimize f(x)

In the above problem there are J inequality and K equality constraints. The can design
problem has two (N=2) variables one (J=1) inequality constraint and no (K = 0) equality
constraint. The simple penalty function method converts the above constrained NLP
problem to an unconstraint minimization problem by penalizing infeasible solutions:

The parameters Rj and rk are the penalty parameters for inequality and equality
constraints respectively.

Modified GA:

Some phenomena in natural genetic system are emulated in fitness function evaluation
and crossover operation in order to improve the efficiency of conventional genetic
algorithms [4]. These include the concept of aging of individuals and ancestors’
influence for computing the fitness value of individuals, and genotypic and phenotypic
similarity for determining pairs undergoing crossover operation. Two methods have been
discussed in below:

Aging of individuals

In the conventional GA once a particular solution becomes more fit, it goes on getting
chances to produce offspring until the end of the algorithm, if a proportional payoff (of
the objective functional value only) selection is used; thereby increasing the chance of
generating similar type of offspring and loosing diversity very fast. More fit individuals
do not normally die (i.e., they are not deleted from the population), and only the less fit
ones die. Thus in order to maintain diversity, larger population size is needed; and this in
turn increases the computational burden and slows down the convergence process. In the
present work, fitness of each individual with respect to age is assigned in such a, way
that after a pre-defined upper age limit (number of iterations), this value becomes zero.
This, more or less, ensures a natural death (deletion from the population) for each
individual keeping its offspring only alive. Thus, in this case a particular individual
cannot dominate for a longer period of time. This helps to maintain diversity in the
population even with smaller population size. It can be mentioned here that, at the onset
when the population is initialized, age of individuals may be initialized either to one or to
any positive value with an upper limit.

()

...2,1

........2,1 0)(

............2,1 0

maxmin =≤≤

==

=≥

ixxx

Kkxh

JjxgtoSubject

iii

k

j

∑ ∑
= =

++=
J

j

K

k
kkjj xhrxgRxfrRxP

1 1

22))(())(()(),,(

 15

Incorporation of ancestor’s influence

As is well known in GAs, in each generation or iteration, the objective function (fitness
measuring criterion) determines the suitability of each individual. Based on these, some
of them, called parent individuals, are selected for reproduction. Number of copies
reproduced by an individual parent is expected to be directly proportional to its fitness
value; hence, the performance of a GA depends on the fitness evaluation criterion, to a
large extent. Genetic operators are applied on these (selected) parent individuals and new
individuals (offspring) are generated. Conventional genetic algorithms (CGAs) consider
only the fitness value of the individual under consideration for measuring its suitability
for selection for the next generation i.e., the fitness of an individual Ii is fiti = g (fvi),
where fvi is the objective function and g is another function which by operating on fvi
gives the fitness value. Hence, a CGA does not discriminate between two identical
offspring, one coming from better (highly fit) parents and the other from comparatively
weaker (low fit) parents. In nature, normally an offspring is found to be more it (suitable)
if its ancestors (parents) are well off i.e., an offspring possess some extra facility to exist
in its environment if it belongs to a better family (ancestors are highly fit). In other
words, the fitness of an individual in Gas should depend also on the fitness of its
ancestors in addition to its own fitness.

Based on this realization, we describe in this section a concept for measuring the fitness
of an individual by considering its own fitness as well as that of its ancestors’ i.e., fitness
of an individual Ii is fiti = g (fvi, a1,a2,……., an) where ais are the fitness values of its
ancestors [12]. The function g may be of various types considering the amount of
importance to be given on the fitness of different ancestors. The weighting factors may be
kept constant or varying during the operation of GAS.

Simulated Annealing

Simulated Annealing (SA) is another nontraditional search and optimization method
which is becoming popular in engineering optimization problems. For the solution of
combinatorial optimization problem, SA is very much suitable and powerful search
technique.
The simulated annealing method resembles the cooling process of molten metals through
annealing. At high temperature, the atoms in the molten metal can move freely with
respect to each another, but as the temperature is reduced, the movement of the atoms
gets restricted. The atoms start to get ordered and finally form crystals having the
minimum possible energy. However, the formation of the crystal mostly depends on the
cooling rate. If the temperature is reduced at a very fast rate, the crystalline state may not
be achieved at all, instead, the system may end up in a polycrystalline state, which may
have a higher energy state than the crystalline state. Therefore, in order to achieve the
absolute minimum energy state, the temperature needs to be reduced at a slow rate. The
process of slow cooling is known as annealing in metallurgical parlance.

 16

Simulated annealing is a point-by-point method. The algorithm begins with an initial
point and a high temperature T. A second point is created at random in the vicinity of the
initial point and the difference in the function values (∆E) at these two points is
calculated. If the second point has a smaller function value, the point is accepted;
otherwise the point is accepted with a probability exp (− ∆ E/T). This completes one
iteration of the simulated annealing procedure. In the next generation, another point is
created at random in the neighbourhood of the current point and the metropolis algorithm
is used to accept or reject the point. In order to simulate the thermal equilibrium at every
temperature, a number of points (n) is usually tested at a particular temperature, before
reducing the temperature. The algorithm is terminated when a sufficiently small
temperature is obtained or a small enough change in function values is found.
The design of an algorithm based on simulated annealing consists of four important
elements: (1) a set of allowed system configurations (configuration space), (2) a set of
feasible moves (move set), (3) a cost function and (4) a cooling schedule. The system to
be optimized starts at a high temperature and is slowly cooled down, until the system
freezes and reaches the global optimum in a manner similar to annealing of a crystal
during growth to reach a perfect structure. At each temperature, the simulated annealing
algorithm is represented in the following pseudo-code
 repeat
 1. perturb
 2. evaluate C
 3. accept/update
 until stop criterion = true
Step-1 perturb the current system configuration to a new configuration. Step-2 evaluate
the change of the cost function dc = c -c. where c and c are the value of the cost function
before and after the move has been executed. Step-3, accept/update if the move decreases
the value of the cost function i.e. dc < 0, the move is accepted and the new configuration
is retained. On the other hand when dc > 0 (i.e. the move is uphill) acceptance is treated

probabilistically in the following way the Boltzman factor e
dc

kT
-

 is first calculated, where
the parameter T is the temperature and k is a constant whose dimension depends on c and
T. Then a random number r uniformly distributed in the interval [0,1] is chosen.

If r ≤ e
dc

kT
−

, the new configuration is retained; otherwise, if r ≥ e
dc

kT
−

, the move is
discarded and the configuration before this move is used for the next step. The algorithm
stops when no significant improvement in the cost function has been found for a number
of consecutive iterations.
The quality of the final solution and the speed of convergence of algorithms based on
simulated annealing depend on the choices of k and the initial temperature in conjunction
with the design of the cooling schedule. The temperature is initially high value so that
the probability of accepting uphill moves are close to 1, and then it is slowly decreased
towards frozen according to a cooling schedule. If the annealing is slow enough, the
probability that the optimal system configuration will be achieved is close to 1. Due to
the probabilistic selection rule, the process can always get out of a local minimum in
which it could get trapped and proceed to the desired global optimum. This feature makes
the simulated annealing different from the greedy search approach.

 17

On the basic of the above analogy, the overall algorithm of the simulated annealing
method described below can be derived.

Step 0: Initialization

Initialize the iteration count k = 0, and the temperature T0 to be sufficiently high. Find an
initial solution x0.

Step 1: Repeat for each temperature Tk

Execute Steps 2-4 until an equilibrium criterion is satisfied.

Step 2: Neighborhood solution

Generate a trial solution xk+1 in the neighborhood of the current solution xk.

Step 3: Acceptance criterion

Let ∆ = f(xk+1) – f (xk)

And r is a random number uniformly distributed over [0,1]. If ∆< 0 (i.e., the solution is
improved), the trial solution is accepted. Otherwise, the trial solution is accepted with the
probability

exp (-∆/Tk)> r

Step 4: Cooling schedule

Gradually decrease the value of the temperate Tk by

Tk+1 = p* Tk, 0<p<1

Steps 5: Convergence check

It the number of the accepted solution is small enough, freezing point is reached and the
algorithm is terminated. Otherwise, set k=k+1 and go to Step 1.

The flow chart of the simulated annealing method above is shown in Fig given below.

 18

 yes no

 no

 no

 Yes

Fig. 1: Flow chart of simulated annealing

START

Select an Initial Temperature T0

Generate a trial solution in the neighborhood of present
solution

Calculate a cost of the trial solution
and set

∆= f(xk+1) – f (xk)

∆<0?

Accept the trial
solution

Accept the trial solution
with probability

Exp ((-∆/Tk)> r

Decrease the temperature by
Tk+1 = p * Tk

Freezing point ?

STOP

K= k+1

 19

References

1. Goldberg, D.E. “ Genetic Algorithms in search, optimization, and machine learning”

Addition-Wesley

2. K. Deb, “Optimization for Engineering Design” PHI, New Delhi.

3. T. Ghose, Dr. S. K. Goswami & Professor S. K. Basu, " Solving Capacitor Placement
Problem In Distribution Systems Using Genetic Algorithms " , Published in Vol. 27,
Number 4,1999 of international jounal of Electric Machines and Power Systems.

4. Ashish Ghosh and S.K. Pal,”Biologically Inspired New Operations for Genetic
Algorithms” Published in prceeding of int. workshop on soft computing and Int.
Systems,ISI Calcutta, January 12-13, 1998.

