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INTRODUCTION:: 
 

Almost any problem in the design, operation, and analysis of manufacturing 
plants, and any associated problem can be reduced in the final analysis to the problem of 
determining the largest and smallest value of a function. So, optimization is the act of 
obtaining the best result under given circumstances. In most engineering design activities  
the design objective could be simply to minimize cost of production or to maximize the 
efficiency of production. For example, optimization required in designing of aircraft and 
aerospace structures for minimum weight, finding the optimal trajectory of space 
vehicles, designing of civil engineering structures such as frames, foundations, bridges, 
towers, chimneys and dams for minimum cost, optimal designing of linkages, cranes, 
gears, machine tools or pumps, turbines and heat transfer equipment for maximum 
efficiency, optimal production planning, controlling, and scheduling, optimal operation 
and control of power system , optimum designing of control system etc. 
 

It is almost impossible to apply a single formulation procedure for all engineering  
design  problems. Since the objective in a design problem and the associated design 
parameters vary from product to product, different techniques need to be used in different 
problems. For the reason, it is required to create a mathematical model of  the  optimal 
design problem, which then can be solved using an optimization algorithm. The steps 
involved are, need for optimization, choose design variables ,formulate constraints, 
formulate objective function, set up variable bounds, choose an optimization algorithm, 
obtain solution. 
              It can be stated as follows 

  
where X is an n-dimensional vector called the design vector, f(X) is termed the objective 
function, and gj(X) and lj(X) are inequality & equality constraints respectively.   
n = no of variables ,      m and p = no of constraints 
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The above problem is called the constrained optimization problem.  The 
problems which do not involve any constraint is called unconstrained optimization 
problem 
          
DESIGN   VARIABLES:: 
 

A design problem usually involves many design parameters, of which some are 
highly sensitive to proper working of the design. These are called design or decision 
variables xi, i=1,2,...,n 
 So design vector,  X={x1, x2,....,xn} 
Certain quantities are usually fixed at the outset & are called preassigned parameters. 
        
 CONSTRAINTS:: 
 
The constraints represent some functional relationships among the design variables & 
other design parameters satisfying certain physical phenomenon & certain resource 
limitations. Constraints that represent limitations on the behavior or performance of the 
systems are termed behavior or functional constraints. Constraints that represent physical 
limitations on design variables such as availability, fabricability, & transportability are 
known as geometric or side constraints. 
  eg.:- in mechanical & civil Engg. problems , the constraints are formulated to satisfy 
stress & deflection limitations. 
 
VARIABLE   BOUNDS:: 
 
There should  be some minimum & maximum bounds on each design variables. It is 
required to confine the search algorithm within these bounds.  
e.g.   xi

(L) ≤ = xi≤ = xi
(U). If the variables do not lie on the bounded region then chosen 

bound may be readjusted & the optimization algorithm  may be simulated again. 
 
 
OBJECTIVE   FUNCTION:: 
 
The criteria with respect to which the design is optimized, when expressed as a function 
of the design variables, is known as criterion or merit or objective function. The objective 
function for minimization is generally taken as weight in air craft & aerospace structural 
design problems i.e. in civil engg., minimization of cost. The maximization of 
mechanical efficiency is the obvious choice of an objective in mechanical design 
engineering problem. However there may be cases where the optimization w.r.t. a 
particular constraint may lead  to results that may not be satisfactory w.r.t another criteria 
e.g.  in mechanical design a gear box transmitting the maximum power may not have the 
minimum weight. So selection of objective function is the most important decision. An 
optimization problem involving multiple objective functions is known as a multi-
objective programming problem. 
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   If  f1(x) and f2(x) denote 2 objective functions, then new one will be 
 
                              f(x) = a*f1(x)+b*f2(x) 
where a & b are constants whose values indicate the relative importance of one to the 
other. 
 
OPTIMIZATION   ALGORITHMS:: 
 
These are basically divided into two groups 
1:-Traditional  methods 
2:-Non traditional  methods 
 
Traditional   methods::-These are helpful in finding the optimum solution of continuous 
& differentiable functions These methods are analytical & make use of the techniques of 
differential calculus. It provides a good understanding of the properties of the minimum 
& maximum points in a function & how optimization algorithm work iteratively to find 
the optimum point in a problem. It is classified into 2 categories   
    1 .Direct method 
                     -Bracketing methods 
                            Exhaustive search method  
                            Bounding phase method 
                     -Region-elimination method 
                            Interval halving method  
                           Fibonasi search method 
                     -Point estimation method 
                           Successive quadratic method 
    2.Gradient method 
                    -Newton raphson method 
                    -Bisection method 
                    -Secant method 
                    -Cubic search method     
 
Direct method do not use any derivative information of the objective function , only its 
values are used to guide the search process. Where as Gradient method uses derivative 
information(1st & 2nd order). 
 
 Demerits::  

•  The convergence to an optimal solution depends on the chosen optimal  
    solution. 
•  Most algorithms tend to get stuck to  a suboptimal solution. 
•  An algorithm efficient in solving one optimization problem may not be efficient        

in solving a different optimization problem. 
•  Algorithms are not efficient in handling problems having discrete variables. 
•  Algorithms can not be efficiently used on parallel machine. 
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2- Nontraditional  optimization  algorithm:: 
 
These are quite new methods & are becoming popular day by day. Two such algorithms 
are   
                               - Genetic   Algorithm 
                               - Simulated   Annealing   
                     Difference between Genetic algorithm & Traditional optimization 
algorithm: 
                                   -GAs work with a coding of the parameter set not the parameters  

             themselves. 
                                   -GAs search from a population of points not a single point. 
                                   -GAs use payoff(objective for) information not derivative or other  

 auxiliary knowledge. 
                                   -GAs use probabilistic transition rules not deterministic rules. 

 
GENETIC ALGORITHMS 

 
Genetic Algorithm is a nontraditional and optimization method based on the mechanics 
of natural genetics and natural selection. Professor John Holland of the University of 
Michigan envisaged the concept of these algorithms in the mid sixties. Thereafter a 
number of his students and other researchers have contributed to developing this field. 
GAs are now becoming very much popular in engineering optimization problems for his 
wide range of precise search and capability of solving complex non-linear problems. 
Research works are going on to extend the efficiency of Genetic Algorithms as well as 
the implementation technique of GAs on various problems. The different steps of GAs 
are now outlined in the working principle.  
 
Working Principles: 
 
Unlike many mathods, GAs use probabilistic transition rules to guide their search. The 
method is not a simple random search or is not a decision making tool depending on the 
simple probability act just like a toss of a coin. GAs use random choice as a tool to guide 
a search toward regions of the search space with likely improvement. 
 
To demonastrate the working principles of GAs, the following maximization problem is 
considered 
 
Maximize    f( ),     x      = 1,2, ......................N      

 
i
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Although a maximization problem is considered here, a minimization problem can also 
be handled using GAs. The working of GAs is completed by performing the following 
tasks: 
 
Coding: To implement GAs in the solution of the above maximization problem, variable 
xi's are first coded in some string structures. Variable xi's are coded by binary 
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representation having 0's and 1's. The length of the coded string is usually determined 
according to the desired solution accuracy. For example, if four bits are used to code each 
variable in a two variable function optimization problem, the strings (0000 , 0000) and 
(1111, 1111) would represent the points ( x , x  )  ( x  x  )1

(L)  
2
(L) T

1
(U)

2
(U) T, , respectively, because 

the substring (0000) and (1111) have the minimum and miximum decoded values. Any 
other eight bit string can be found to represent a point in the search space according to a 
fixed mapping rule. Usually, the following linear mapping rule is used: 
 

x  = x  + 
x  - x

2  - 1
  decoded val ue (Si i

(L) i
(U)

i
(L)

Li i )  

 
 
In the above equation, the variable xi is coded in a substring Si of length li. The decoded 

value of a binary substring Si is calculated as  

 

2  S    where S  (0, 1) and thei
i

i=0

l-1

∑ ∈, string S is represented as (Sl-1 Sl-2.... S2S1So). For 

example, a four bit string (0 111) has a decoded value equal to ((1) 2o + (1) 2' + (1) 22 + 

(0) 23) or 7. It is worthwhile to mention here that with four bits to code each variable, 

there are only 24 or 16 distinct substrings possible, because each bit position can take a 
value either 0 or 1. The accuracy that can be obtained with a four bit coding is only 
approximately 1/16th of the search space. But as the string length is increased by one, the 
obtainable increases exponentially to 1/32th of the search space. 
 
 
Initialization : 
 
Referring to the maximization problem a set of binary strings representing the variable xi 

are generated at random to make the initial population. The string in GA  correponds to ' 
"chromosome" and bits in a string refers "genes" in natural genetics.     
 
Fitness Function :  
Every member string in a population is judged by the functional value of the fitness 
function. As GAs follow the rule of survival-of-the-fittest candidate in nature to make a 
search process so the algorithm is naturally suitable for solving maximization problems. 
Minimization problems are ususally transformed into minimization problems by some 
suitable tranformation. In general, a fitness function F(x) is first derived from the 
objective function and used in successive genetic operations.  
 
 
Genetic Operators: 
 
With an initial population of individuals of various fitness values, the operators of GAs 
begin to generate a new and improved population from the old one. A simple genetic 
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algorithm (SGA) consists of three basic operations : reproduction, crossover and 
mutation. Through these operations a new population of points is evaluated. The 
population is iteratively operated by the above three operators and evaluated until the  
goal or termination criterion is met. One cycle of these operations and subsequent 
evaluation procedure is known as generation in GAs. 
 
Reproduction: 
 
Reproduction is usually the first operator applied on a population. Reproduction selects 
strings according to the fitness values in a population and forms a mating pool. Selecting 
strings according to their fitness values means that string with a higher value have a 
higher probability of contributing one or more off springs to the next generation. The i-th 
string in the population is selected with a probability proportional to Fi. Since the 

population size is usually kept fixed in a simple GA, the sum of the probability of each 
string being selected for the mating pool must be one. Therefore, the probability for 
selecting the i-th string is 
 

                                             ρ i =

=
∑

F

F

i

j
j

n

1

 , 

 
where, n is the population size. One way to implement this selection scheme is to imagine 
a roulette-wheel with its circumference marked for each string proportionate to the 
string's fitness. The roulette-wheel is spun n times, each time selecting an instance of the 
string chosen by the roulette-wheel pointer. Since the circumference of the wheel is 
marked according to a string's fitness, the roulette-wheel mechanism is expected to make 

F Fi /
−

 copies of the i-th string in the mating pool. The average fitness of the population is 
calculated as, 
 

                                            F F
n

i

i

n

=
=
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Fig. 1   shows a roulette-wheel for fine individuals having different fitness values. Since 
the third individual has a higher fitness value than any other, it is  expected that the 
roulette-wheel selection will choose the third individual more than any other individual. 
This roulette-wheel selection scheme can be simulated easily. 

Using the fitness value Fi of all strings, the probability of selecting a string Pi can 

be calculated. Therefore, the cumulative probability (Pi) of each string being copied can 

be calculated by adding the individual probabilities from the top of the list. 
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Point Fitness 

1 25.0 
2 5.0 
3 40.0 
4 10.0 
5 20.0 

 
Crossover: 
 
In reproduction, good strings in a population are probabilistically assigned a larger 
number of copies and a mating pool is formed. But no new strings are formed in the 
reproduction phase. In the crossover operator, new strings are created by exchanging 
information among strings of the mating pool. Many crossover operators exists in the GA 
literature. In most crossover operators, two strings are picked from the mating pool at 
random and some portions of the strings are exchanged between the strings. A single -
point crossover operator is performed by randomly choosing a crossing site along the 
string and by exchanging all bits on the right side of the crossing site as shown: 

0 0 0      1  0  0          0 0 0  1 0 1

                                  

   1  1   1 0  1           1 1 1    1 0 0 

⇒  

The two strings participating in the crossover operation are known as parent strings and 
the resulting strings are known as children strings. It can be expected that good substrings 
from parent strings can be combined to form a better child string, if an appropriate site is 
chosen. Since the knowledge of an appropriate site is usually not known beforehand, a 
random site is often chosen. With a random site, the children strings produced may or 
may not have a combination of good substrings from parent strings, depending on the 
position of crossover point. If good children are not produced from crossover operator, 
there is no need to worry so much about this. Because reproduction operator will select 
these strings with fewer copy in subsequent strings as a result they will not survive too 
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long. It is clear from this discussion that the effect of crossover may be detrimental or 
beneficial. Thus, in order to preserve some of the good strings that are already present in 
the mating pool, not all strings in the mating pool are used in crossover. 
 
Mutation : 
A crossover operator is mainly responsible for the search of new strings, even though a 
mutation operator is also used for this purpose. The mutation operator changes 1 to 0 and 
vice versa in a bit position with a small mutation probability, pm. Changing bit with 

probability pm can be simulated by choosing a number between 0 to 1 at random. If the 

random number is smaller than pm, the randomly selected bit is altered; otherwise the bit 

is kept unchanged. The need for mutation is to create a point in the neighbourhood of the 
current point, thereby achieving a local search around the current solution. The mutation 
is also used to maintain diversity in the population. For example, consider the following 
population having four eight-bit strings: 
 

0 1 1 0  1 1 0 0 
0 0 1 0  0 0 1 1 
0 1 0 1  1 1 1 1 
0 1 1 1  0 0 0 0  

 
Notice that all four strings have a 0 in the left-most position. If the true optimum solution 
requires 1 in that position, then neither reproduction nor crossover operator described 
above will be able to create 1 in that position. The inclusion of mutation introduces some 
probability of turning 0 into 1. 
 
These three operators are simple and straightforward. A number of research papers have 
so far been conducted to improve the efficiency of GAs. Some variations have been 
introduced in GAs operators. In most cases, the variants are developed to suit particular 
problems. 
 
 
 
 
Advantages of GAs : 
 
As seen from the above description of the working principles of GAs, they are radically 
different from most of the traditional optimization methods. However, the general 
advantages are described in the following paragraphs. 
GAs work with a string-coding of variables instead of the variables. The advantage of 
working with a coding of variables is that the coding discretizes the search space, even 
though the function may be continuous. On the other hand, since GAs require only 
function values at various discrete points a discrete or discontinuous function can be 
handled with no extra cost. This allows GAs to be applied to a wide variety of problems. 
Another advantage is that the GA operators exploit the similarities in string-structures to 
make an effective search. 
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The most striking difference between GAs work with a population of points instead of a 
single point. Because there are more than one string being processed simultaneously, it is 
very likely that the expected GA solution may be a global solution. Even though some 
traditional algorithms are population-based, like Box's evolutionary optimization and 
complex search methods, those methods do not use previously obtained information 
efficiently. In GAs, previously found good information is emphasized using reproduction 
operator and propagated adaptively through crossover and mutation operators. Another 
advantage with a population-based search algorithm is that multiple optimal solutions can 
be captured in the population easily, thereby reducing the effort to use the same algorithm 
many times. 
In discussing GA operators or their working principles in the previous section, nothing 
has been mentioned about the gradient or any other auxiliary problem information. In 
fact, GAs do not require any auxiliary information  except the objective function values. 
Although the direct search methods used in traditional optimization methods do not 
explicitly require the gradient information, some of those methods use search directions 
that are similar in concept to the gradient of the function. Moreover, some direct search 
methods work under the assumption that the function to be optimized is unimodal and 
continuous. In GAs, no such assumption is necessary. 
One other difference in the operation of GAs is the use of probabilities in their operators. 
None of the genetic operators work deterministically. The basic problem with most of the 
traditional methods is that they use fixed transition rules to move from one point to 
another. For instance, in the steepest descent method, the search direction is always 
calculated as the negative of the gradient at any point, because in that direction the 
reduction in the function value is maximum. In trying to solve a multimodal problem 
with many local optimum points, search procedures may easily get trapped in one of the 
local optimum points. But in GAs, an initial random population is used, to start with, the 
search can proceed in any direction and no major decisions are made in the beginning. 
Later on, when the population begins to converge in some bit positions, the search 
direction narrows and a near optimal solution is achieved. This nature of narrowing the 
search space as the search progresses is adaptive and is a unique characteristic of genetic 
algorithms. 
 
 
 
An Examples 
 
Design of simple can by GA 
 
A cylindrical can is considered to have only two design parameters- diameter d and 
height h. Let us consider that the can needs to have a volume of at least 300ml and the 
objective of the design is to minimize the cost of can material.  
Nonlinear objective function  
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Step 1 

 

In order to get optimal parameter values of  d and h which satisfy the constraint g4 and 
minimize f we first need to code the parameter values in binary strings. 
 
Assume five bits are representing each of the parameters. So the overall string length is 
equal to 10. 
 
The following string represents a can of diameter 8 cm and height 10 cm. 
 
 
   01000               01010     h  = 10 
            d                       h              
                                      d = 8                          
   
Step 2 
In the above representation, the lower and upper  values of both parameters are 
considered to be zero and 31. So mapping function is not required to use to get the exact 
value as minimum (00000) and maximum  value (11111) represent 0 and 31 respectively   
which  satisfy  the lower and upper bounds considered for  d and h parameters.  But GAs 
can be assigned to use any integer or non-integer values  just by changing the string 
length, lower and upper bounds. 
   xi 

max - xi
min     

xi = xi
min + ------------------ X Decoded value of string i. 

   2L-1 

In the above example L = 5, xi
min = 0, xi

max = 31 

Step 3  

Assigning fitness to a solution 

The fitness is made equal to the objective function value. For example, the fitness of 

above can  

F (S) = 0.0654 x    Π82 
       ------- + ∏ (8) (1 0)  
                                          2   

23 
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=  23  (assuming  C = .0654) 
 
Since the objective of the optimization is to maximize the objective function, it is to be 
noted that a solution with a smaller fitness value is better compared to another solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 A random population of 6 cans. 
Fig. 2 shows a random population of 6 cans. This fitness (penalized cost ) of each can is 
marked on the can. It is interesting to note that two solutions do not have 300 ml. volume  
inside and thus have been penalized by adding an extra artificial cost thus making the 
infeasible ones become worse solutions. 
 
Step 4 
Reproduction operator : The primary objective of the reproduction operator is to 
emphasize good solutions and eliminate bad solutions in a population, while keeping the 
population size constant. This is achieved by performing the following tasks: 
 
(1) Identifying good (usually above-average) solution in a population . 
(2) Making multiple-copies  of good solutions. 
(3) Eliminating bad solutions from the population so that multiple copies of good 

solutions can be placed in the population. 
There exist a number of ways to achieve the above tasks. Some common methods are 
tournament selection- proportionate selection, ranking selection and others. In the 
following, we illustrate the binary tournament selection. 
 
As the name suggests, tournaments are played between two solutions and the better 
solution is chosen and placed in a population slot. Two other solutions are picked again 
and another population slot is filled up with the better solution. If done systematically, 
each solution can be made to participate in exactly two tournaments. The best solution in 
a population will win both times, thereby making two copies of it in the new population. 
Similarly, the worst solution will lose in both tournaments  and will be eliminated from  
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the population. This way, any solution in a population will have zero, one, or two copies 
in the new population.  
Figure 3 shows the six different tournaments played between the old population  
members ( each gets exactly two turns) shown in figure 3. When cans with a cost of 23 
units and 30 units are chosen at random for tournament, the can costing 23 units is chosen 
and placed in the new population . Both cans are replaced in the old population  and two 
cans are chosen for other tournaments in the next round. This is how the mating pool is 
formed and  the new population  after reproduction shown in box of fig . 3 is created. It is 
interesting to note how better solutions (having lesser costs) have made themselves have 
more than one copy in the new population and worse solutions have been eliminated from 
the population. This is precisely the purpose of a reproduction operator. 
 

Mating Pool 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                    +28 
 
 
 
 
 
 
                     +28 
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                 +35 
 
 

Figure 3. Tournaments played between six population members are shown. Solutions 
within the dashed  box form the mating pool. 
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Step  5 
 
Like the reproduction operator, there exist a number of methods for crossover operations. 
Here a single point crossover operation is illustrating for the CAN problem. In fig. 4, 
reproduction operator selects two strings and the third site along the string length  in 
chosen at random and contents of the right side of this cross site are swapped between the 
two strings.  The process creates two new strings. 
 

 

  (8,10) 010   00    01010   Æ  01010  00110 
 
 
  (14,6) 011   10    00110  Æ  01100   01010         
 
 
 
 

Fig. 4 : An illustration of the single point crossover operator. 
 
 
In order to preserve some good strings selected during the reproduction operator, not all 
strings in the population are used in crossover. If a crossover probability of Pc is used 
then 100 Pc% strings in the population are used in the crossover operation and (100 (1-
Pc)% of the population are simply copied  to the new population. 
 
Step 6 
 
The mutation operator changes 1 to a 0 and vice versa with a small mutation probability 
Pm. The need for mutation is to keep diversity in the population. Fig. 5 shows how a 
string obtained after reproduction and crossover operator has been mutated to another 
string representing a slightly different CAN. 
 
                 (10, 6 )0.1 010-    001100Æ  01000  00110   (8 X 6) 
 
        

 
Fig. 5 An illustration of the mutation operation. 

 
Constrained optimization using GA 

An optimal design problem having N variables is written as a nonlinear programming 

(NLP) problem as follows: 

22 16 
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37 
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Minimize f(x) 

In the above problem there are J inequality and K equality constraints. The can design 
problem has two (N=2) variables one (J=1)  inequality constraint and no (K = 0) equality 
constraint. The simple penalty function method converts the above  constrained  NLP 
problem to an unconstraint minimization problem by penalizing infeasible solutions: 
 

The parameters Rj and rk are the penalty parameters for inequality and equality 
constraints respectively. 

Modified GA: 

 
Some  phenomena in natural  genetic system are emulated in fitness function evaluation 
and crossover operation in order to improve the efficiency of conventional genetic 
algorithms [4]. These include the concept  of aging of individuals and ancestors’ 
influence for computing the fitness value of individuals, and genotypic and phenotypic 
similarity for determining pairs undergoing crossover operation. Two methods have been 
discussed in below: 
 
Aging of individuals  
 
In  the conventional GA once a particular solution becomes more fit, it goes on getting 
chances to produce offspring until the  end of the algorithm, if a proportional payoff (of  
the objective functional value only) selection is used; thereby increasing the chance of 
generating similar type of offspring and loosing diversity very fast. More fit individuals  
do not normally die (i.e., they are not deleted from the population ), and only the less fit 
ones die. Thus in order to maintain diversity, larger population size is needed; and this in 
turn increases the computational burden and slows down the convergence process. In  the 
present work, fitness of each individual with respect to age is assigned in such a,  way 
that after a pre-defined  upper age limit ( number of iterations), this value becomes  zero. 
This, more or less, ensures a natural death (deletion from the population) for each  
individual keeping its offspring only alive. Thus, in this case a particular individual  
cannot dominate for a longer period of time. This helps to maintain diversity in the 
population even with smaller population size. It can be mentioned here that, at the  onset  
when the population is initialized, age of individuals may be initialized either to one or to 
any positive value with an upper limit. 
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Incorporation of ancestor’s influence 
 
As is well known in GAs, in each generation or iteration, the objective function (fitness 
measuring criterion) determines the suitability of each individual. Based on these, some  
of them, called parent individuals, are selected  for reproduction. Number of copies  
reproduced by an individual parent is expected to be directly proportional to its fitness 
value; hence, the performance of a GA depends on the fitness evaluation criterion, to  a 
large extent. Genetic operators are applied on these (selected) parent individuals and new 
individuals (offspring) are generated. Conventional genetic algorithms (CGAs) consider 
only the fitness value of the individual under consideration for measuring its suitability  
for  selection for the next generation i.e., the fitness of an individual Ii is fiti = g (fvi), 
where fvi is the objective function and g is another function which by operating on fvi 
gives the fitness value. Hence, a CGA does not discriminate between  two identical 
offspring, one coming from better (highly fit) parents and the other from comparatively 
weaker (low fit) parents. In nature, normally an offspring is found to be more it (suitable) 
if its ancestors (parents) are well off i.e., an offspring possess some  extra facility to exist 
in its environment if it belongs to a better family (ancestors are highly fit). In other 
words, the fitness of an individual in Gas should depend also on the fitness  of its 
ancestors in addition to its own fitness. 
 
Based on this realization, we describe in this section a concept for measuring the fitness 
of an individual by considering its own fitness as well as that of its ancestors’ i.e.,  fitness 
of an individual Ii is fiti = g (fvi, a1,a2,……., an) where ais are the fitness values  of its 
ancestors [12].  The function g may be of various types considering the amount of 
importance to be given on the fitness of different ancestors. The weighting factors may be 
kept constant or varying during the operation of GAS. 

 

Simulated Annealing 

 
Simulated Annealing (SA) is another nontraditional search and optimization method 
which is becoming popular in engineering optimization problems. For the solution of 
combinatorial optimization problem, SA is very much suitable and powerful search 
technique. 
The simulated annealing method resembles the cooling process of molten metals through 
annealing. At high temperature, the atoms in the molten metal can move freely with 
respect to each another, but as the temperature is reduced, the movement of the atoms 
gets restricted. The atoms start to get ordered and finally form crystals having the 
minimum possible energy. However, the formation of the crystal mostly depends on the 
cooling rate. If the temperature is reduced at a very fast rate, the crystalline state may not 
be achieved at all, instead, the system may end up in a polycrystalline state, which may 
have a higher energy state than the crystalline state. Therefore, in order to achieve the 
absolute minimum energy state, the temperature needs to be reduced at a slow rate. The 
process of slow cooling is known as annealing in metallurgical parlance. 
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Simulated annealing is a point-by-point method. The algorithm begins with an initial 
point and a high temperature T. A second point is created at random in the vicinity of the 
initial point and the difference in the function values (∆E) at these two points is 
calculated. If the second point has a smaller function value, the point is accepted; 
otherwise the point is accepted with a probability exp ( − ∆ E/T). This completes one 
iteration of the simulated annealing procedure. In the next generation, another point is 
created at random in the neighbourhood of the current point and the metropolis algorithm 
is used to accept or reject the point. In order to simulate the thermal equilibrium at every 
temperature, a number of points (n) is usually tested at a particular temperature, before 
reducing the temperature. The algorithm is terminated when a sufficiently small 
temperature is obtained or a small enough change in function values is found. 
The design of an algorithm based on simulated annealing consists of four important 
elements: (1) a set of allowed system configurations (configuration space), (2) a set of 
feasible moves (move set), (3) a cost function and (4) a cooling schedule. The system to 
be optimized starts at a high temperature and is slowly cooled down, until the system 
freezes and reaches the global optimum in a manner similar to annealing of a crystal 
during growth to reach a perfect structure. At each temperature, the simulated annealing 
algorithm is represented in the following pseudo-code 
 repeat 
  1. perturb 
   2. evaluate C 
   3. accept/update 
  until stop criterion = true 
Step-1 perturb the current system configuration to a new configuration. Step-2 evaluate 
the change of the cost function dc = c -c. where c and c are the value of the cost function 
before and after the move has been executed. Step-3, accept/update if the move decreases 
the value of the cost function i.e. dc < 0, the move is accepted and the new configuration 
is retained. On the other hand when dc > 0 (i.e. the move is uphill) acceptance is treated 

probabilistically in the following way the Boltzman factor e
dc

kT
-  

 is first calculated, where 
the parameter T is the temperature and k is a constant whose dimension depends on c and 
T. Then a random number r uniformly distributed in the interval [0,1] is chosen. 

If r ≤ e
dc

kT
− 

, the new configuration is retained; otherwise, if r ≥ e
dc

kT
− 

, the move is 
discarded and the configuration before this move is used for the next step. The algorithm 
stops when no significant improvement in the cost function has been found for a number 
of consecutive iterations. 
The quality of the final solution and the speed of convergence of algorithms based on 
simulated annealing depend on the choices of k and the initial temperature in conjunction 
with the design of the cooling schedule. The temperature is initially  high value so that 
the probability of accepting uphill moves are close to 1, and then it is slowly decreased 
towards frozen according to a cooling schedule. If the annealing is slow enough, the 
probability that the optimal system configuration will be achieved is close to 1. Due to 
the probabilistic selection rule, the process can always get out of a local minimum in 
which it could get trapped and proceed to the desired global optimum. This feature makes 
the simulated annealing different from the greedy search approach. 
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On the basic of the above analogy,  the overall algorithm of the simulated annealing 
method described below can be derived. 
 
Step 0: Initialization 
 
Initialize the iteration count k = 0, and the temperature T0 to be  sufficiently high. Find an 
initial solution x0. 
 
Step 1: Repeat for each temperature Tk 
 
Execute Steps 2-4 until an equilibrium criterion is satisfied. 
 
Step 2: Neighborhood solution 
 
Generate a trial solution xk+1 in the neighborhood of the current solution xk. 
 
Step 3: Acceptance criterion 
 
Let ∆ = f(xk+1) – f (xk)                                                
 
And r is a random number uniformly distributed over [0,1]. If ∆< 0 (i.e., the solution is 
improved), the trial solution is accepted. Otherwise, the trial solution is accepted with the 
probability 
 
exp (-∆/Tk)> r     
 
 
Step 4: Cooling schedule 
 
Gradually decrease the value of the temperate Tk by 
 
Tk+1 = p* Tk, 0<p<1 
 
Steps 5: Convergence check 
 
It the number of the accepted solution is small enough, freezing point is reached and the 
algorithm is terminated. Otherwise, set k=k+1 and go to Step 1. 
 
The flow chart of the simulated annealing method above is shown in Fig given below.  
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Fig. 1: Flow chart of simulated annealing 
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